N-Heterocyclic Carbene-Catalyzed [4 + 2] Cyclization of Saturated Carboxylic Acid with *o*-Quinone Methides through in Situ Activation: Enantioselective Synthesis of Dihydrocoumarins

Yuanfeng Wang,[†] Jian Pan,[†] Jingjiao Dong,[†] Chenxia Yu,[†] Tuanjie Li,[†] Xiang-Shan Wang,^{†©} Shide Shen,[‡] and Changsheng Yao^{*,†©}

[†]Jangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China

[‡]Xuzhou Institute of Architectural Technology, Xuzhou, Jiangsu 221116, China

Supporting Information

ABSTRACT: An *N*-heterocyclic carbene (NHC)-catalyzed formal [4 + 2] synthesis of dihydrocoumarins was realized from saturated carboxylic acids and *o*-quinone methides via an in situ activation strategy. This protocol results in excellent diastereoselectivity and enantioselectivity and good yields and uses readily available and inexpensive starting materials.

3,4-Dihydrocoumarin derivatives have been illustrated to

Scheme 1. Generation of NHC-Bounded Enolates

Over the past few decades, *N*-heterocyclic carbenes (NHCs) have been confirmed to be able to act as nucleophiles,⁵ Brønsted bases,⁸ and Lewis bases⁹ to promote the asymmetric transformations effectively. Recently, Ye's group and Wang et al. also disclosed the NHC-catalyzed formation of 3,4dihydrocoumarins.¹⁰ As an important intermediate in NHC catalysis, NHC-bounded enolates A could be generated from α chloro aldehydes,¹¹ aliphatic aldehydes,¹² enals,¹³ ketenes,¹⁴ esters,¹⁵ and saturated carboxylic acids (Scheme 1).¹⁶ Then, intermediate A could be trapped by other reactive species to assemble the heterocyclic skeletons readily. Compared with other carbonyl compounds, carboxylic acids are more stable, more available, and less enolizable so that they could bypass many side reactions, e.g., aldol condensation. In 2014, Scheidt's group found a smooth method for the synthesis of dihydroquinolones via NHC-bounded enolates generated in situ from saturated carboxylic acids in the presence of carbonyldiimidazole (CDI).^{17'} Later, our group presented the β -functionalization of saturated carboxylic acids in the presence of NHC and 2-(7-aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU) to establish spi-

rocyclic oxindolo- γ -butyrolactones.¹⁸ Because these activation reagents could promote the creation of homoenolates effectively, we envisioned that the NHC-catalyzed [4 + 2] cyclization of saturated carboxylic acids with *o*-quinone methides through NHC-bounded enolate via in situ activation could provide a new access to 3,4-dihydrocoumarins (Scheme 2).

4-Bromophenylacetic acid 1a and o-quinone methide 2a were selected as the model substrates to optimize the reaction conditions, and the key results are summarized in Table 1. Initially, several peptide coupling reagents were investigated (Table 1, entries 1-4) and only HATU was found to give the desired product in good yield and excellent enantioselectivity. Subsequently, catalyst 4c was used prior to other counterparts during an assessment of the NHC precursors (Table 1, entries 5-8). A careful examination of the bases indicated that 3,4-

Received: October 6, 2016 Published: January 11, 2017 Scheme 2. New Access to NHC-Bounded Enolates through the in Situ Activation of Carboxylic Acids Facilitated by Peptide Coupling Reagents

PCR = peptide coupling reagents; LG = leaving group; PMP = p-Methoxyphenyl

Table 1. Optimization of the Reaction Conditions.^a

^{*a*}Reaction conditions: **1a** (0.24 mmol), **2a** (0.2 mmol), NHC cat. (0.03 mmol), base (0.5 mmol), PCR (0.3 mmol), solvent (4 mL), -5 °C. ^{*b*}DCC = dicyclohexylcarbodiimide. DIC = *N*,*N*-diisopropylcarbodiimide. HOBt = 1-hydroxybenzotriazole. ^{*c*}Isolated yields. ^{*d*}Diastereomeric ratio determined by ¹H NMR spectroscopy. ^{*e*}The ee values were determined by HPLC.

dihydrocoumarins could be obtained in 72% yield with 12:1 ratio of cis:trans-isomers and 96% ee using Cs_2CO_3 (Table 1, Supporting Information, entries 9–12). Then CH_2Cl_2 , 1,4dioxane, THF, toluene, and CHCl₃ were deployed to explore the scope of the solvents (Table 1, Supporting Information, entries 13–16). The results showed that alkanes and ether solvents had different effects on the d.r. value, and CH_2Cl_2 was best among them. Subsequently, a scrutiny of the amount of catalyst indicated that 15 mol % of 4c should be optimal (Table 1, Supporting Information, entries 19–20). Gratifyingly, both the reaction diastereo- and enantioselectivity were improved by further lowering the temperature to -5 °C (Table 1, Supporting Information, entries 17–18); thus, the optimal reaction condition was finally established (Table 1, entry 4).

With the optimized reaction conditions in hand, we focused on our attention to evaluate the scope of these formal [4 + 2]annulations (Table 2). These reactions showed that a broad range of acetic acids substituted by aryl or alkyl groups 1 were compatible with the protocol. Both electron-withdrawing (such as F, Cl, Br, I, and CF_3) and electron-rich groups, including Me and OMe, were tolerated at the C-2, C-3, and C-4 positions of the phenyl ring, affording the desired products with high diastereo- and enantioselectivity (Table 2, entries 1-10). To our delight, the acetic acids possessing fused aryl groups, including 2-(naphthalen-1-yl) and 2-(naphthalen-2-yl), or a heteroaryl group, e.g., thiophen-2-yl, could also be employed in this [4 + 2] cyclization to provide the corresponding products in moderate yields (Table 2, entries 12-14). It should be noted that this protocol could be applied to butyric acid, delivering the anticipated cycloadduct diastereoselectively and enantioselectively in moderate yield (Table 2, entry 15). Thus, this methodology showed good tolerance to the alkyl substituents. Furthermore, o-quinone methides with a cinnamyl substituent worked also well for the reaction (Table 2, entry 16). In addition, the reaction involving a new o-quinone methide 5 substituted by two methoxy groups was carried out, and the expected products was obtained in 63% yield with excellent diastereo- and enantioselectivity (>20:1 dr, 97% ee, see Scheme

Table 2. Scope of Reactions^a

₽ ¹ (4c (15 mol %) Cs ₂ CO ₃ (2.5 equiv.) HATU (1.5 equiv.) CH ₂ Cl ₂ , -5 °C		$\bigcup_{R^2}^{0} \bigcup_{R^2}^{0} \bigcup_{R$	
~~~		R ²				
1	2				3	
	$R^1$	$R^2$	product	yield (%) ^c	d.r. ^d	ee (%) ^e
1	$4-BrC_6H_4$	PMP	3a	72	12:1	96
2	Ph	PMP	3b	80	>20:1	99
3	$4-FC_6H_4$	PMP	3c	68	15:1	98
4	$4-IC_6H_4$	PMP	3d	79	13:1	90
5	$4-CH_3C_6H_4$	PMP	3e	86	>20:1	98
6	4- <i>i</i> -PrC ₆ H ₄	PMP	3f	83	12:1	86
7	3-ClC ₆ H ₄	PMP	3g	72	8:1	96
8	$3-BrC_6H_4$	PMP	3h	72	7:1	90
9	3-CH ₃ OC ₆ H ₄	PMP	3i	53	12:1	92
10	$4-CF_3C_6H_4$	PMP	3j	56	5:1	88
11	2-CH ₃ C ₆ H ₄	PMP	3k	78	20:1	97
12	2-(naphthalene- 1-yl)	РМР	31	71	>20:1	86
13	2-(naphthalene- 2-yl)	PMP	3m	54	>20:1	96
14	thiophen-2-yl	PMP	3n	60	3:2	79
15	ethyl	PMP	30	65	>20:1	99
16	$4-CH_3OC_6H_4$	cinnamyl	3p	71	>20:1	99
17	$4-BrC_6H_4$	PEP ^b	3q	68	15:1	96

^{*a*}Reaction conditions: 1 (0.24 mmol), 2 (0.2 mmol), 4c (0.03 mmol),  $Cs_2CO_3$  (0.3 mmol), HATU (0.3 mmol), DCM (4 mL), -5 °C. ^{*b*}_{*p*}-Ethoxyphenyl. ^{*c*}Isolated yields. ^{*d*}Diastereomeric ratio determined by ¹H NMR spectroscopy. ^{*e*}The ee values were determined by HPLC.

2, Supporting Information). These results highlighted the wide application scope of the NHC-catalyzed asymmetric construction of 3,4-dihydrocoumarin.

The absolute configuration of **3h** was determined by the Xray analysis of its crystal. Other product configurations were deduced based on analogy (see the Supporting Information for further details).

A reasonable mechanism for this NHC-catalyzed [4 + 2] cyclization is illustrated in Scheme 3. The addition of catalyst **4c** to the ester substrates which were generated in situ from the saturated carboxylic acids gave intermediate **B**, which underwent a deprotonation to give rise to the NHC-bounded enolate

#### Scheme 3. Possible Catalytic Mechanism



intermediate A in the presence of base. The later formal [4 + 2] annulation of intermediate A with *o*-quinone methides 2 provided zwitterionic intermediate C, which was transformed into the final cycloadduct product 3 through collapse, and the catalyst was regenerated.

In summary, we developed an NHC-catalyzed [4 + 2] cyclization of saturated carboxylic acids with *o*-quinone methides through in situ activation strategy. With this approach, a diverse set of 3,4-dihydrocoumarin derivatives were generated in moderate to good yields with excellent d.r. and ee values. Aside from the extension of the scope of the protocol developed herein, other NHC-catalyzed conversions of saturated carboxylic acids via in situ activation are underway in our laboratory.

# EXPERIMENTAL SECTION

General Procedure for the Preparation of Compounds 3a–r. An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with triazolium salt 4c (12.6 mg, 0.03 mmol),  $Cs_2CO_3$ (162.9 mg, 0.50 mmol), saturated carboxylic acids 1 (0.24 mmol), *o*quinone methides 2 (0.2 mmol), and HATU (114.0 mg, 0.3 mmol). This tube was closed with a septum, evacuated, and refilled with nitrogen. To this mixture was added freshly distilled  $CH_2Cl_2$  (4 mL) with a syringe. Then, the mixture was stirred at -5 °C until completion (monitored by TLC). After removal of the solvent under reduced pressure, the resulting crude residue was purified by column chromatography (silica gel, mixtures of petroleum ether:ethyl acetate, 7:1, v/v) to afford the desired product 3.

(7R,8S)-7-(4-Bromophenyl)-8-(4-methoxyphenyl)-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-one (**3a**). White solid. Yield: 0.068 g (72%); mp: 155–156 °C. ¹H NMR (400 MHz, CDCl₃):  $\delta_{\rm H}$  7.33 (d, J = 8.4 Hz, 2H), 7.26 (s, 1H), 6.74–6.64 (m, 6H), 6.55 (s, 1H), 5.97 (dd,  $J_1 = 14.8$  Hz,  $J_2 = 1.2$  Hz, 2H), 4.29 (d, J = 6.4 Hz, 1H), 4.09 (d, J = 6.0 Hz, 1H), 3.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃):  $\delta_{\rm C}$  167.6, 159.2, 147.8, 145.5, 144.6, 133.3, 131.8, 131.1, 129.7, 129.3, 121.9, 119.1, 114.0, 107.1, 101.8, 99.1, 55.2, 51.7, 48.8. IR (potassium bromide) ( $\nu$ , cm⁻¹): 3627, 2921, 2375, 1754, 1514, 1480, 1445, 1253, 1155, 939, 848, 735. HRMS (ESI) m/z: calcd for [M + Na]⁺ C₂₃H₁₇BrNaO₅: 475.0157; found: 475.0126. [ $\alpha$ ]_D²⁵ = +338 (c = 0.1, CHCl₃). HPLC analysis: 96% ee [Daicel Chiralcel OZ-H, *n*-hexane/ methanol = 90/10,  $\nu = 0.8$  mL min⁻¹,  $\lambda = 254$  nm, *t* (major) = 17.7 min, *t* (minor) = 23.8 min].

(7*R*,8*S*)-8-(4-*Methoxyphenyl*)-7-*phenyl*-7,8-*dihydro*-6*H*-[1,3]*dioxolo*[4,5-*g*]*chromen*-6-*one* (**3b**). White solid. Yield: 0.061 g (80%); mp: 158–160 °C. ¹H NMR (400 MHz, CDCl₃):  $\delta_{\rm H}$  7.24– 7.17 (m, 3H), 6.81–6.79 (m, 2H), 6.75 (s, 1H), 6.71–6.89 (m, 2H), 6.65–6.63 (m, 2H), 6.55 (s, 1H), 5.97 (dd, *J*₁ = 13.6 Hz, *J*₂ = 1.2 Hz, 2H), 4.33 (d, *J* = 6.0 Hz, 1H), 4.13 (d, *J* = 6.0 Hz, 1H), 3.75 (s, 3H). ¹³C NMR (100 MHz, CDCl₃):  $\delta_{\rm C}$  168.0, 159.0, 147.6, 145.7, 144.5, 134.2, 130.1, 129.8, 129.6, 127.9, 127.6, 119.4, 113.9, 107.2, 101.8, 99.1, 55.2, 52.2, 48.9. IR (potassium bromide) (*v*, cm⁻¹): 3627, 2903, 1762, 1610, 1511, 1481, 1440, 1252, 1153, 1035, 935, 833, 752. HRMS (ESI) *m*/*z*: calcd for [M + Na]⁺ C₂₃H₁₈NaO₅: 397.1052; found: 397.1052. [*a*]_D²⁵ = +284 (*c* = 0.1, CHCl₃). HPLC analysis: 99% ee [Daicel Chiralcel OZ-H, *n*-hexane/methanol = 90/10, *v* = 0.8 mL min⁻¹,  $\lambda$  = 254 nm, *t* (major) = 17.5 min, *t* (minor) = 23.6 min].

(7R,8S)-7-(4-Fluorophenyl)-8-(4-methoxyphenyl)-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-one (**3c**). White solid. Yield: 0.053 g (68%); mp: 146–148 °C. ¹H NMR (400 MHz, CDCl₃):  $\delta_{\rm H}$  6.94–6.89 (m, 2H), 6.80–6.77 (m, 3H), 6.75–6.72 (m, 2H), 6.67–6.65 (m, 2H), 6.58 (s, 1H), 6.00 (dd,  $J_1$  = 14.4 Hz,  $J_2$  = 1.2 Hz, 2H), 4.35 (d, J = 6.4 Hz, 1H), 4.11 (d, J = 6.0 Hz, 1H), 3.78 (s, 3H). ¹³C NMR (100 MHz, CDCl₃):  $\delta_{\rm C}$  167.9, 162.2 ( $J_{\rm C-F}$  = 246.5 Hz), 159.1, 147.7, 145.6, 144.6, 131.7 ( $J_{\rm C-F}$  = 8.1 Hz), 130.1 ( $J_{\rm C-F}$  = 3.3 Hz), 129.7, 129.4, 114.9 ( $J_{\rm C-F}$  = 21.4 Hz), 114.7, 114.0, 107.1, 101.8, 99.1, 55.2, 51.4, 49.0. IR (potassium bromide) ( $\nu$ , cm⁻¹): 3627, 2921, 1754, 1513, 1479, 1443, 1251, 1155, 1034, 848, 827, 744. HRMS (ESI) m/z: calcd for [M + Na]⁺ C₂₃H₁₇FNaO₅: 415.0958; found: 415.0959. [ $\alpha$ ]_D²⁵ = +155 (c =

# The Journal of Organic Chemistry

0.1, CHCl₃). HPLC analysis: 98% ee [Daicel Chiralcel OZ-H, *n*-hexane/methanol = 90/10,  $\nu = 0.8$  mL min⁻¹,  $\lambda = 254$  nm, *t* (major) = 15.4 min, *t* (minor) = 18.8 min].

(7*R*,8*S*)-7-(4-lodophenyl)-8-(4-methoxyphenyl)-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-one (**3d**). White solid. Yield: 0.071 g (79%); mp: 170–171 °C. ¹H NMR (400 MHz, CDCl₃):  $\delta_{\rm H}$  7.53 (d, *J* = 8.4 Hz, 2H), 6.74–6.71 (m, 3H), 6.66–6.64 (m, 2H), 6.55–6.52 (m, 3H), 5.97 (dd, *J*₁ = 14.8 Hz, *J*₂ = 1.2 Hz, 2H), 4.27 (d, *J* = 6.4 Hz, 1H), 4.09 (d, *J* = 6.0 Hz, 1H), 3.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃):  $\delta_{\rm C}$  167.6, 159.2, 147.8, 145.5, 144.6, 137.0, 134.0, 132.0, 129.7, 129.3, 119.1, 114.0, 107.1, 101.8, 99.1, 93.7, 55.2, 51.8, 48.8. IR (potassium bromide) ( $\nu$ , cm⁻¹): 3627, 2921, 2375, 1753, 1511, 1482, 1250, 1157, 936, 840, 738. HRMS (APCI) *m*/*z*: calcd for [M + H]⁺ C₂₃H₁₈IO₅: 501.0199; found: 501.0198. [ $\alpha$ ]_D²⁵ = +129 (*c* = 0.1, CHCl₃). HPLC analysis: 90% ee [Daicel Chiralcel OZ-H, *n*-hexane/methanol = 90/10,  $\nu$  = 0.8 mL min⁻¹,  $\lambda$  = 254 nm, *t* (major) = 18.6 min, *t* (minor) = 26.8 min].

 $(\bar{7}R,8S)$ -8-(4-Methoxyphenyl)-7-(p-tolyl)-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-one (**3e**). White solid. Yield: 0.067 g (86%); mp: 75–77 °C. ¹H NMR (400 MHz, DMSO- $d_6$ ):  $\delta_{\rm H}$  6.98 (d, J = 8.0 Hz, 2H), 6.94 (s, 1H), 6.79–6.75 (m, 3H), 6.70 (d, J = 7.6 Hz, 2H), 6.65 (d, J = 8.4 Hz, 2H), 6.02 (d, J = 16.8 Hz, 2H), 4.69 (d, J = 6.0 Hz, 1H), 4.23 (d, J = 6.4 Hz, 1H), 3.68 (s, 3H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃):  $\delta_{\rm C}$  168.3, 159.0, 147.6, 145.7, 144.5, 137.3, 131.1, 130.0, 129.8, 128.7, 119.6, 113.8, 107.2, 101.7, 99.1, 55.2, 51.9, 48.8, 21.1. IR (potassium bromide) (v, cm⁻¹): 3627, 2921, 2380, 1755, 1611, 1512, 1480, 1440, 1251, 1154, 1033, 936, 848, 746. HRMS (ESI) m/z: calcd for [M + Na]⁺ C₂₄H₂₀NaO₅: 411.1208; found: 411.1208. [ $\alpha$ ]_D²⁵ = +95 (c = 0.1, CHCl₃). HPLC analysis: 98% ee [Daicel Chiralcel OZ-H, *n*-hexane/methanol = 90/10, v = 0.8 mL min⁻¹,  $\lambda$  = 254 nm, *t* (major) = 14.8 min, *t* (minor) = 19.5 min].

(7*R*,8*S*)-7-(4-*Isopropylphenyl*)-8-(4-*methoxyphenyl*)-7,8-*dihydro*-6*H*-[1,3]*dioxolo*[4,5-*g*]*chromen*-6-*one* (**3***f*). White solid. Yield: 0.069 g (83%); mp: 191–192 °C. ¹H NMR (400 MHz, CDCl₃):  $\delta_{\rm H}$  7.04 (d, *J* = 8.0 Hz, 2H), 6.74 (s, 1H), 6.72–6.64 (m, 6H), 6.54 (s, 1H), 5.96 (dd, *J*₁ = 13.6 Hz, *J*₂ = 1.2 Hz, 2H), 4.29 (d, *J* = 6.4 Hz, 1H), 4.12 (d, *J* = 6.4 Hz, 1H), 3.76 (s, 3H), 2.88–2.81 (m, 1H), 1.21 (dd, *J*₁ = 6.8 Hz, *J*₂ = 2.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃):  $\delta_{\rm C}$  168.3, 159.0, 148.2, 147.6, 145.7, 144.4, 131.4, 129.9, 129.8, 126.0, 119.6, 113.8, 107.2, 101.7, 99.1, 55.2, 51.9, 48.8, 33.7, 24.0, 23.9. IR (potassium bromide) ( $\nu$ , cm⁻¹): 3627, 2921, 2380, 1761, 1610, 1512, 1481, 1439, 1252, 1153, 1034, 936, 822, 741. HRMS (ESI) *m*/*z*: calcd for [M + Na]⁺ C₂₆H₂₄NaO₅: 439.1521; found: 439.1521. [ $\alpha$ ]_D²⁵ = +97 (*c* = 0.1, CHCl₃). HPLC analysis: 86% ee [Daicel Chiralcel OZ-H, *n*-hexane/ methanol = 90/10,  $\nu$  = 0.8 mL min⁻¹,  $\lambda$  = 254 nm, *t* (major) = 12.1 min, *t* (minor) = 17.8 min].

(7*R*,8*S*)-7-(3-*Chlorophenyl*)-8-(4-*methoxyphenyl*)-7,8-*dihydro*-6*H*-[1,3]*dioxolo*[4,5-*g*]*chromen*-6-one (**3***g*). White solid. Yield: 0.059 g (72%); mp: 147–148 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ_H 7.29 (d, *J* = 8.4 Hz, 1H), 7.22 (t, *J* = 8.0 Hz, 1H), 6.97 (s, 1H), 6.82–6.78 (m, 5H), 6.64 (d, *J* = 8.4 Hz, 2H), 6.04 (d, *J* = 16.8 Hz, 2H), 4.86 (d, *J* = 6.4 Hz, 1H), 4.29 (d, *J* = 6.4 Hz, 1H), 3.68 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ_C 167.4, 159.2, 147.8, 145.6, 144.6, 130.3, 129.65, 129.7, 129.1, 128.3, 119.0, 114.5, 114.0, 107.1, 101.8, 99.1, 55.3, 51.9, 48.9. IR (potassium bromide) (*v*, cm⁻¹): 3627, 2921, 2375, 1754, 1514, 1480, 1443, 1251, 1134, 1035, 939, 848, 745. HRMS (ESI) *m*/*z*: calcd for [M + Na]⁺ C₂₃H₁₇ClO₅: 431.0662; found: 431.0644. [*α*]_D²⁵ = +174 (*c* = 0.1, CHCl₃). HPLC analysis: 96% ee [Daicel Chiralcel OZ-H, *n*-hexane/methanol = 90/10, *v* = 0.8 mL min⁻¹,  $\lambda$  = 254 nm, *t* (major) = 16.5 min, *t* (minor) = 21.6 min].

(7R,8S)-7-(3-Bromophenyl)-8-(4-methoxyphenyl)-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-one (**3h**). White solid. Yield: 0.065 g (72%); mp: 150–151 °C. ¹H NMR (400 MHz, CDCl₃):  $\delta_{\rm H}$  7.40– 7.38 (m, 1H), 7.06 (t, *J* = 8.0 Hz, 1H), 6.97–6.95 (m, 1H), 6.76–6.69 (m, 4H), 6.65–6.63 (m, 2H), 6.56 (s, 1H), 5.99 (dd, *J*₁ = 14.4 Hz, *J*₂ = 1.2 Hz, 2H), 4.30 (d, *J* = 6.4 Hz, 1H), 4.10 (d, *J* = 6.4 Hz, 1H), 3.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃):  $\delta_{\rm C}$  167.4, 159.2, 147.8, 145.5, 144.6, 136.5, 133.2, 130.8, 129.7, 129.4, 128.8, 121.8, 119.0, 114.0, 107.1, 101.8, 99.1, 55.3, 51.9, 48.9. IR (potassium bromide) ( $\nu$ , cm⁻¹): 3627, 2921, 2375, 1754, 1513, 1480, 1447, 1255, 1144, 1033, 937, 846, 747. HRMS (ESI) m/z: calcd for  $[M + Na]^+ C_{23}H_{17}BrNaO_s$ : 475.0157; found: 475.0125.  $[\alpha]_D^{25} = +185$  (c = 0.1, CHCl₃). HPLC analysis: 90% ee [Daicel Chiralcel OZ-H, *n*-hexane/methanol = 90/10,  $\nu = 0.8$  mL min⁻¹,  $\lambda = 254$  nm, *t* (major) = 14.7 min, *t* (minor) = 17.0 min].

 $(\bar{7}R,8S)$ -7-(3-Methoxyphenyl)-8-(4-methoxyphenyl)-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-one (**3i**). White solid. Yield: 0.043 g (53%); mp: 170–171 °C. ¹H NMR (400 MHz, CDCl₃):  $\delta_{\rm H}$  7.16– 7.12 (t, *J* = 8.0 Hz, 1H), 6.82–6.69 (m, 6H), 6.58 (s, 1H), 6.48 (d, *J* = 7.6 Hz, 1H), 6.28 (s, 1H), 5.99 (d, *J* = 14.0 Hz, 2H), 4.32 (d, *J* = 6.0 Hz, 1H), 4.15 (d, *J* = 6.0 Hz, 1H), 3.77 (s, 3H), 3.59 (s, 3H). ¹³C NMR (100 MHz, CDCl₃):  $\delta_{\rm C}$  167.9, 159.1, 158.9, 147.7, 145.6, 144.5, 135.6, 129.8, 129.8, 128.9, 122.4, 119.4, 115.2, 113.9, 107.2, 101.8, 99.1, 55.3, 55.0, 52.1, 48.9. IR (potassium bromide) ( $\nu$ , cm⁻¹): 3627, 2960, 1760, 1610, 1511, 1484, 1441, 1247, 1155, 1034, 942, 866, 755. HRMS (ESI) *m/z*: calcd for [M + Na]⁺ C₂₄H₂₀NaO₆: 427.1158 found: 427.1156. [*a*]_D²⁵ = +100 (*c* = 0.2, CHCl₃). HPLC analysis: 92% ee [Daicel Chiralcel OZ-H, *n*-hexane/methanol = 90/10,  $\nu$  = 0.8 mL min⁻¹,  $\lambda$  = 254 nm, *t* (major) = 19.2 min, *t* (minor) = 25.0 min].

(7*R*,8*S*)-8-(4-*Methoxyphenyl*)-7-(o-tolyl)-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-one (**3***j*). White solid. Yield: 0.061 g (78%); mp: 62–63 °C. ¹H NMR (400 MHz, DMSO-d₆):  $\delta_{\rm H}$  7.18 (d, *J* = 7.6 Hz, 1H), 7.09 (t, *J* = 7.4 Hz, 1H), 6.96 (s, 1H), 6.84 (t, *J* = 7.6 Hz, 1H), 6.78 (s, 1H), 6.72 (d, *J* = 8.4 Hz, 2H), 6.58 (d, *J* = 8.4 Hz, 2H), 6.31 (d, *J* = 7.6 Hz, 1H), 6.03 (d, *J* = 14.0 Hz, 2H), 4.79 (d, *J* = 6.0 Hz, 1H), 4.31 (d, *J* = 6.0 Hz, 1H), 3.67 (s, 3H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃):  $\delta_{\rm C}$  168.2, 159.0, 147.7, 145.7, 144.5, 135.9, 132.2, 130.7, 130.1, 129.9, 129.6, 127.5, 125.3, 119.3, 113.8, 107.2, 101.8, 99.1, 55.2, 47.5, 47.0, 19.6. IR (potassium bromide) (*ν*, cm⁻¹): 3627, 2921, 2380, 1745, 1615, 1519, 1475, 1446, 1244, 1155, 1032, 939, 846, 743. HRMS (ESI) *m*/*z*: calcd for [M + Na]⁺ C₂₄H₂₀NaO₅: 411.1208; found: 411.1208. [*α*]_D²⁵ = +132 (*c* = 0.1, CHCl₃). HPLC analysis: 97% ee [Daicel Chiralcel OZ-H, *n*-hexane/methanol = 90/10, *ν* = 0.8 mL min⁻¹,  $\lambda$  = 254 nm, *t* (major) = 11.2 min, *t* (minor) = 13.7 min].

(75,8*R*)-8-(4-Methoxyphenyl)-7-(4-(trifluoromethyl)phenyl)-7,8dihydro-6*H*-[1,3]dioxolo[4,5-g]chromen-6-one (**3k**). White solid. Yield: 0.050 g (56%); mp: 85–86 °C. ¹H NMR (400 MHz, CDCl₃):  $\delta_{\rm H}$  7.46 (d, *J* = 8.0 Hz, 2H), 6.92 (d, *J* = 8.0 Hz, 2H), 6.76 (s, 1H), 6.71 (d, *J* = 8.4 Hz, 2H), 6.64 (d, *J* = 8.8 Hz, 2H), 6.56 (s, 1H), 5.98 (d, *J* = 15.6 Hz, 2H), 4.40 (d, *J* = 6.0 Hz, 1H), 4.12 (d, *J* = 6.4 Hz, 1H), 3.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃):  $\delta_{\rm C}$  167.4, 159.2, 147.8, 145.5, 144.7, 138.3, 130.6, 129.6, 129.1 (*J*_{C-F} = 1.5 Hz), 128.8, 124.8 (*J*_{C-F} = 3.8 Hz), 119.0, 114.1, 107.1, 101.8, 99.1, 55.2, 52.0, 48.8. IR (potassium bromide) ( $\nu$ , cm⁻¹): 3620, 2951, 1723, 1529, 1479, 1442, 1326, 1252, 1153, 1044, 858, 829, 734. HRMS (APCI) *m*/ *z*: calcd for [M + H]⁺ C₂₄H₁₈F₃O₅: 443.1106; found: 443.1083. [ $\alpha$ ]_D²⁵ = +96 (*c* = 0.1, CHCl₃). HPLC analysis: 88% ee [Daicel Chiralpak IC, *n*-hexane/*i*-PrOH = 92/8,  $\nu$  = 0.8 mL min⁻¹,  $\lambda$  = 254 nm, *t* (major) = 19.4 min, *t* (minor) = 18.4 min].

(7R,8S)-8-(4-Methoxyphenyl)-7-(naphthalen-1-yl)-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-one (3l). White solid. Yield: 0.060 g (71%); mp: 134–135 °C. ¹H NMR (400 MHz, CDCl₃):  $\delta_{\rm H}$  7.96– 7.90 (m, 2H), 7.77 (d, J = 8.4 Hz, 1H), 7.55–7.506 (m, 2H), 7.23 (t, J = 7.6 Hz, 1H), 6.83-6.80 (m, 2H), 6.63-6.60 (m, 3H), 6.48-6.44 (m, 2H), 6.01 (dd, *J*₁ = 16.0 Hz, *J*₂ = 1.2 Hz, 2H), 5.24 (d, *J* = 6.0 Hz, 1H), 4.27 (d, J = 6.0 Hz, 1H), 3.73 (s, 3H). ¹³C NMR (100 MHz, CDCl₃):  $\delta_{\rm C}$  167.9, 159.0, 147.8, 145.8, 144.6, 133.7, 131.3, 129.9, 129.6, 129.5, 129.3, 129.1, 128.1, 126.6, 125.4, 124.8, 121.3, 119.5, 113.7, 107.3, 101.8, 99.2, 55.2, 47.3, 46.6. IR (potassium bromide) (v, cm⁻¹): 3627, 2921, 2360, 1770, 1610, 1512, 1481, 1440, 1251, 1152, 1120, 1035, 935, 831, 746. HRMS (ESI) m/z: calcd for  $[M + Na]^+ C_{27}H_{20}NaO_5$ : 447.1208; found: 447.1206.  $\left[\alpha\right]_{D}^{25} = +320$  (c = 0.1, CHCl₃). HPLC analysis: 86% ee [Daicel Chiralcel OZ-H, n-hexane/methanol = 90/10,  $v = 0.8 \text{ mL min}^{-1}$ ,  $\lambda = 254 \text{ nm}$ , t (major) = 15.7 min, t (minor) = 23.1 minmin

(7R,8S)-8-(4-Methoxyphenyl)-7-(naphthalen-2-yl)-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-one (**3m**). White solid. Yield: 0.046 g (54%); mp: 104–105 °C. ¹H NMR (400 MHz, CDCl₃):  $\delta_{\rm H}$  7.80– 7.75 (m, 1H), 7.71–7.66 (m, 1H), 7.62 (d, *J* = 8.8 Hz, 1H), 7.48–7.41 (m, 3H), 6.78 (s, 1H), 6.75 (dd, *J*₁ = 8.4 Hz, *J*₂ = 1.6 Hz, 1H), 6.84–

# The Journal of Organic Chemistry

6.63 (m, 4H), 6.57 (s, 1H), 5.98 (dd,  $J_1 = 15.6$  Hz,  $J_2 = 1.2$  Hz, 2H), 4.50 (d, J = 6.4 Hz, 1H), 4.21 (d, J = 6.0 Hz, 1H), 3.73 (s, 3H). ¹³C NMR (100 MHz, CDCl₃):  $\delta_{\rm C}$  168.1, 159.1, 147.7, 145.7, 144.6, 133.0, 132.7, 131.9, 129.8, 129.6, 129.4, 127.9, 127.8, 127.6, 127.2, 126.1, 125.9, 119.4, 113.9, 107.2, 101.8, 99.2, 55.3, 52.4, 49.1. IR (potassium bromide) (v, cm⁻¹): 3627, 2902, 1759, 1608, 1509, 1439, 1399, 1244, 1150, 1036, 940, 853, 776. HRMS (ESI) m/z: calcd for [M + Na]⁺ C₂₇H₂₀NaO₅: 447.1208; found: 447.1208.  $[\alpha]_{\rm D}^{25} = +664$  (c = 0.1, CHCl₃). HPLC analysis: 96% ee [Daicel Chiralcel OZ-H, *n*-hexane/ methanol = 90/10, v = 0.8 mL min⁻¹,  $\lambda = 254$  nm, *t* (major) = 27.2 min, *t* (minor) = 35.6 min].

(75,85)-8-(4-Methoxyphenyl)-7-(thiophen-2-yl)-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-one (**3n**). White solid. Yield: 0.046 g (60%); mp: 55–56 °C. ¹H NMR (400 MHz, CDCl₃):  $\delta_{\rm H}$  7.21 (d, *J* = 5.2 Hz, 1H), 7.05 (d, *J* = 7.2 Hz, 1H), 6.80–6.74 (m, 6H), 6.58 (s, 1H), 6.01–5.99 (m, 2H), 4.68 (d, *J* = 5.6 Hz, 1H), 4.28 (d, *J* = 6.0 Hz, 1H), 3.77 (d, *J* = 1.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃):  $\delta_{\rm C}$ 167.3, 159.2, 147.8, 145.5, 144.6, 135.4, 129.5, 128.6, 126.3, 125.5, 118.9, 114.0, 107.2, 101.8, 99.1, 55.2, 48.9, 47.3. IR (potassium bromide) ( $\nu$ , cm⁻¹): 3432, 2904, 1766, 1610, 1512, 1481, 1439, 1252, 1153, 1111, 1034, 934, 858, 703. HRMS (ESI) *m/z*: calcd for [M +NH₄]⁺ C₂₁H₂₀NO₅S: 398.1062; found: 398.1057. [ $\alpha$ ]_D²⁵ = +287 (*c* = 0.1, CHCl₃). HPLC analysis: 79% ee [Daicel Chiralcel OZ-H, *n*-hexane/methanol = 90/10,  $\nu$  = 0.8 mL min⁻¹,  $\lambda$  = 254 nm, *t* (major) = 22.7 min, *t* (minor) = 28.7 min].

(75,85)-7-Ethyl-8-(4-methoxyphenyl)-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-one (**3o**). Yellow oil. Yield: 0.042 g (65%). ¹H NMR (400 MHz, DMSO- $d_6$ ):  $\delta_{\rm H}$  6.97 (d, J = 8.4 Hz, 2H), 6.86– 6.82 (m, 4H), 6.00 (d, J = 19.2 Hz, 2H), 4.23 (d, J = 6.4 Hz, 1H), 3.70 (s, 3H), 3.07–3.03 (m, 1H), 1.65–1.58 (m, 1H), 1.20–1.11 (m, 1H) 0.97 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃):  $\delta_{\rm C}$  170.2, 158.9, 147.4, 145.4, 144.2, 130.6, 128.8, 119.7, 114.3, 107.2, 101.6, 99.0, 55.2, 46.3, 44.5, 20.2, 12.03. IR (potassium bromide) ( $\nu$ , cm⁻¹): 3432, 2965, 1762, 1610, 1513, 1482, 1440, 1252, 1154, 1118, 1035, 945, 834, 799. HRMS (APCI) m/z: calcd for [M + H]⁺ C₁₉H₁₉O₅: 327.1232; found: 327.1232. [ $\alpha$ ]_D²⁵ = -20 (c = 0.1, (reported: -36.0976¹⁹) CHCl₃). HPLC analysis: 99% ee [Daicel Chiralcel OZ-H, n-hexane/methanol = 90/10,  $\nu$  = 0.8 mL min⁻¹,  $\lambda$  = 254 nm, t (major) = 22.4 min, t (minor) = 24.1 min].

(75,85)-7-(4-Methoxyphenyl)-8-((E)-styryl)-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-one (**3p**). White solid. Yield: 0.057 g (71%); mp: 172–173 °C. ¹H NMR (400 MHz, CDCl₃):  $\delta_{\rm H}$  7.31– 7.21 (m, SH), 7.15 (d, *J* = 8.8 Hz, 2H), 6.86 (d, *J* = 8.8 Hz, 2H), 7.70 (s, 1H), 6.62 (s, 1H), 6.28 (d, *J* = 15.6 Hz, 1H), 6.06–5.99 (m, 3H), 4.16 (d, *J* = 5.6 Hz, 1H), 3.85 (dd, *J*₁ = 8 Hz, *J*₂ = 5.6 Hz, 1H), 3.79 (s, 3H). ¹³C NMR (100 MHz, CDCl₃):  $\delta_{\rm C}$  168.6, 159.1, 147.7, 145.6, 144.5, 136.3, 133.8, 130.9, 128.6, 127.9, 126.5, 126.0, 125.6, 118.0, 113.9, 107.0, 101.8, 99.2, 55.3, 50.3, 45.9. IR (potassium bromide) ( $\nu$ , cm⁻¹): 3627, 2837, 1766, 1615, 1517, 1480, 1438, 1253, 1151, 1119, 1037, 967, 826, 758. HRMS (APCI) *m/z*: calcd for [M + H]⁺ C₂₅H₂₁O₅: 401.1389; found: 401.1369. [ $\alpha$ ]_D²⁵ = +123 (*c* = 0.1, CHCl₃). HPLC analysis: 99% ee [Daicel Chiralcel OZ-H, *n*-hexane/ methanol = 90/10,  $\nu$  = 0.8 mL min⁻¹,  $\lambda$  = 254 nm, *t* (major) = 14.4 min, *t* (minor) = 13.3 min].

(7*R*,8*S*)-7-(4-Bromophenyl)-8-(4-ethoxyphenyl)-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-6-one (**3q**). White solid. Yield: 0.064 g (68%); mp: 83–84 °C. ¹H NMR (400 MHz, CDCl₃):  $\delta_{\rm H}$  7.33–7.30 (m, 2H), 6.73–6.61 (m, 7H), 6.54 (s, 1H), 5.96 (dd,  $J_1$  = 14.4 Hz,  $J_2$  = 1.2 Hz, 2H), 4.28 (d, J = 6.4 Hz, 1H), 4.07 (d, J = 6.4 Hz, 1H), 3.96(q, J = 7.0 Hz, 2H), 1.38 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃):  $\delta_{\rm C}$  167.6, 158.6, 147.7, 145.5, 144.6, 133.4, 131.8, 131.1, 129.7, 129.1, 121.9, 119.2, 114.6, 107.2, 101.8, 99.1, 63.4, 51.7, 48.8, 14.8. IR (potassium bromide) ( $\nu$ , cm⁻¹): 2979, 2898, 2360, 2342, 1769, 1610, 1510, 1481, 1440, 1250, 1153, 1127, 1074, 1037, 1011, 924, 863, 824, 795, 730. HRMS (APCI) *m*/*z*: calcd for [M + H]⁺ C₂₄H₂₀BrO₅: 467.0494; found: 467.0490. [ $\alpha$ ]_D²⁵ = +172 (c = 0.1, CHCl₃). HPLC analysis: 96% ee [Daicel Chiralpak IC, *n*-hexane/*i*-PrOH = 92/8,  $\nu$  = 0.8 mL min⁻¹,  $\lambda$  = 254 nm, *t* (major) = 27.6 min, *t* (minor) = 35.4 min]. (3*R*,4*S*)-3-(4-Bromophenyl)-6,7-dimethoxy-4-(4-methoxyphenyl)chroman-2-one (**3***r*). White solid. Yield: 0.059 g (63%); mp: 86–87 °C. ¹H NMR (400 MHz, CDCl₃):  $\delta_{\rm H}$  7.33 (d, *J* = 8.4 Hz, 2H), 6.77 (s, 1H), 6.72 (d, *J* = 8.8 Hz, 2H), 6.68–6.64 (m, 4H), 6.59 (s, 1H), 4.32 (d, *J* = 6.4 Hz, 1H), 4.13 (d, *J* = 6.4 Hz, 1H), 3.92 (s, 3H), 3.79 (s, 3H), 3.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃):  $\delta_{\rm C}$  167.8, 159.2, 149.3, 146.1, 144.9, 133.5, 131.8, 131.1, 129.7, 129.4, 121.9, 117.7, 114.0, 110.2, 101.1, 56.2, 56.2, 55.2, 52.1, 48.7. IR (potassium bromide) (*v*, cm⁻¹): 3000, 2933, 2835, 2360, 2342, 1769, 1609, 1511, 1464, 1409, 1253, 1231, 1192, 1124, 1072, 1030, 1011, 928, 856, 804, 765, 732. HRMS (APCI) *m*/*z*: calcd for [M + H]⁺ C₂₄H₂₂BrO₅: 469.0651; found: 469.0656. [*α*]_D²⁵ = +110 (*c* = 0.1, CHCl₃). HPLC analysis: 97% ee [Daicel Chiralpak IC, *n*-hexane/*i*-PrOH = 92/8, *v* = 0.8 mL min⁻¹,  $\lambda$  = 254 nm, *t* (major) = 75.0 min, *t* (minor) = 84.5 min].

## ASSOCIATED CONTENT

## **S** Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b02444.

¹H and ¹³C NMR spectra for all pure products (PDF) X-ray crystal data for **3h** (CIF)

### AUTHOR INFORMATION

#### **Corresponding Author**

*E-mail: csyao@jsnu.edu.cn.

## ORCID [©]

Xiang-Shan Wang: 0000-0002-0077-7819 Changsheng Yao: 0000-0002-0185-2366

#### Notes

The authors declare no competing financial interest.

## ACKNOWLEDGMENTS

We are grateful for financial support by the National Natural Science Foundation of China (Grants 21242014 and 21372101), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institution (TAPP).

### REFERENCES

(1) (a) Murray, R. D. H.; Mendez, J.; Brown, S. A. The Natural Coumarins: Occurrence, Chemistry and Biochemistry; Wiley & Sons: New York, 1982. (b) Naser-Hijazi, B.; Stolze, B.; Zanker, K. S. Second Proceedings of the International Society of the Coumarin Investigators; Springer: Berlin, Germany, 1994. (c) Yu, D.; Suzuki, M.; Xie, L.; Morris-Natschke, S. L.; Lee, K.-H. Med. Res. Rev. 2003, 23, 322. (d) Medina, F. G.; Marrero, J. G.; Macias-Alonso, M.; Gonzalez, M. C.; Cordova-Guerrero, I.; Teissier Garcia, A. G.; Osegueda-Robles, S. Nat. Prod. Rep. 2015, 32, 1472.

(2) (a) Kumar, A.; Singh, B. K.; Tyagi, R.; Jain, S. K.; Sharma, S. K.; Prasad, A. K.; Raj, H. G.; Rastogi, R. C.; Watterson, A. C.; Parmar, V. S. Bioorg. Med. Chem. 2005, 13, 4300. (b) Roelens, F.; Huvaere, K.; Dhooge, W.; Van Cleemput, M.; Comhaire, F.; De Keukeleire, D. Eur. J. Med. Chem. 2005, 40, 1042. (c) Zhang, X.; Wang, H.; Song, Y.; Nie, L.; Wang, L.; Liu, B.; Shen, P.; Liu, Y. Bioorg. Med. Chem. Lett. 2006, 16, 949. (d) Keri, R. S.; Sasidhar, B. S.; Nagaraja, B. M.; Santos, M. A. Eur. J. Med. Chem. 2015, 100, 257. (e) Zhang, S. Y.; Lv, M.; Yin, S. J.; Li, N. K.; Zhang, J. Q.; Wang, X. W. Adv. Synth. Catal. 2016, 358, 143. (3) (a) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633. (b) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731. (c) Shi, Z.; He, C. J. Org. Chem. 2004, 69, 3669. (d) Youn, S. W.; Pastine, S. J.; Sames, D. Org. Lett. 2004, 6, 581. (e) Matsuda, T.; Shigeno, M.; Murakami, M. J. Am. Chem. Soc. 2007, 129, 12086. (f) Rodrigues-Santos, C. E.; Echevarria, A. Tetrahedron Lett. 2007, 48, 4505.

## The Journal of Organic Chemistry

(4) (a) Fillion, E.; Dumas, A. M.; Kuropatwa, B. A.; Malhotra, N. R.; Sitler, T. C. J. Org. Chem. 2006, 71, 409. (b) Barluenga, J.; Andina, F.; Aznar, F. Org. Lett. 2006, 8, 2703. (c) Teichert, J. F.; Feringa, B. L. Chem. Commun. 2011, 47, 2679. (d) Kuang, Y.; Liu, X.; Chang, L.; Wang, M.; Lin, L.; Feng, X. Org. Lett. 2011, 13, 3814. (e) Blay, G.; Munoz, M. C.; Pedro, J. R.; Sanz-Marco, A. Adv. Synth. Catal. 2013, 355, 1071. (f) Amezquita-Valencia, M.; Alper, H. Org. Lett. 2014, 16, 5827.

(5) (a) Candish, L.; Forsyth, C. M.; Lupton, D. W. Angew. Chem., Int. Ed. 2013, 52, 9149. (b) Cheng, J.; Huang, Z.; Chi, Y. R. Angew. Chem., Int. Ed. 2013, 52, 8592. (c) Candish, L.; Lupton, D. W. J. Am. Chem. Soc. 2013, 135, 58. (d) Yetra, S. R.; Kaicharla, T.; Kunte, S. S.; Gonnade, R. G.; Biju, A. T. Org. Lett. 2013, 15, 5202. (e) Zhang, H. R.; Dong, Z. W.; Yang, Y. J.; Wang, P. L.; Hui, X. P. Org. Lett. 2013, 15, 4750. (f) Fu, Z.; Jiang, K.; Zhu, T.; Torres, J.; Chi, Y. R. Angew. Chem., Int. Ed. 2014, 53, 6506. (g) Lee, A.; Scheidt, K. A. Angew. Chem., Int. Ed. 2014, 53, 7594. (h) Li, Y.; Yang, S.; Wen, G.; Lin, Q.; Zhang, G.; Qiu, L.; Zhang, X.; Du, G.; Fang, X. J. Org. Chem. 2016, 81, 2763.

(6) (a) Cheng, Y.; Peng, J. H.; Li, Y. J.; Shi, X. Y.; Tang, M. S.; Tan, T. Y. J. Org. Chem. 2011, 76, 1844. (b) Jin, M. Y.; Kim, S. M.; Mao, H.; Ryu, D. H.; Song, C. E.; Yang, J. W. Org. Biomol. Chem. 2014, 12, 1547. (c) Stockton, K. P.; Greatrex, B. W.; Taylor, D. K. J. Org. Chem. 2014, 79, 5088. (d) Langdon, S. M.; Wilde, M. M. D.; Thai, K.; Gravel, M. J. Am. Chem. Soc. 2014, 136, 7539. (e) Huang, Z.; Huang, X.; Li, B.; Mou, C.; Yang, S.; Song, B.; Chi, Y. R. J. Am. Chem. Soc. 2016, 138, 7524.

(7) (a) Liu, Q.; Rovis, T. J. Am. Chem. Soc. 2006, 128, 2552.
(b) DiRocco, D. A.; Noey, E. L.; Houk, K. N.; Rovis, T. Angew. Chem, Int. Ed. 2012, 51, 2391. (c) Jia, M. Q.; You, S. L. Chem. Commun.
2012, 48, 6363. (d) Jia, M. Q.; Liu, C.; You, S. L. J. Org. Chem. 2012, 77, 10996. (e) Wurz, N. E.; Daniliuc, C. G.; Glorius, F. Chem. - Eur. J.
2012, 18, 16297. (f) Rafiński, Z.; Kozakiewicz, A.; Rafińska, K. ACS Catal. 2014, 4, 1404. (g) Zhao, M.; Yang, H.; Li, M.; Chen, J.; Zhou, L. Org. Lett. 2014, 16, 2904. (h) Wang, Y.; Tang, M.; Wang, Y.; Wei, D. J. Org. Chem. 2016, 81, 5370.

(8) (a) Grasa, G. A.; Kissling, R. M.; Nolan, S. P. Org. Lett. 2002, 4, 3583.
(b) Movassaghi, M.; Schmidt, M. A. Org. Lett. 2005, 7, 2453.
(c) Chen, J.; Huang, Y. Nat. Commun. 2014, 5, 3437.
(d) Chen, J.; Meng, S.; Wang, L.; Tang, H.; Huang, Y. Chem. Sci. 2015, 6, 4184.

(9) (a) Fischer, C.; Smith, S. W.; Powell, D. A.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 1472. (b) Ma, D.; Qiu, Y.; Dai, J.; Fu, C.; Ma, S. Org. Lett. 2014, 16, 4742. (c) Flanagan, J. C. A.; Kang, E. J.; Strong, N. I.; Waymouth, R. M. ACS Catal. 2015, 5, 5328.

(10) (a) Lv, H.; You, L.; Ye, S. Adv. Synth. Catal. 2009, 351, 2822.
(b) Wu, Z.; Wang, X.; Li, F.; Wu, J.; Wang, J. Org. Lett. 2015, 17, 3588.
(11) (a) He, M.; Uc, G. J.; Bode, J. W. J. Am. Chem. Soc. 2006, 128, 15088. (b) Yang, L.; Wang, F.; Chua, P. J.; Lv, Y.; Zhong, L. J.; Zhong, G. Org. Lett. 2012, 14, 2894. (c) Dong, X.; Yang, W.; Hu, W.; Sun, J. Angew. Chem., Int. Ed. 2015, 54, 660.

(12) (a) Zhao, X.; Ruhl, K. E.; Rovis, T. Angew. Chem., Int. Ed. 2012, 51, 12330. (b) Mo, J.; Yang, R.; Chen, X.; Tiwari, B.; Chi, Y. R. Org. Lett. 2013, 15, 50. (c) Mo, J.; Shen, L.; Chi, Y. R. Angew. Chem., Int. Ed. 2013, 52, 8588. (d) Lin, L.; Yang, Y.; Wang, M.; Lai, L.; Guo, Y.; Wang, R. Chem. Commun. 2015, 51, 8134.

(13) (a) Shu, T.; Ni, Q.; Song, X.; Zhao, K.; Wu, T.; Puttreddy, R.; Rissanen, K.; Enders, D. Chem. Commun. 2016, 52, 2609. (b) Xu, J.; Chen, X.; Wang, M.; Zheng, P.; Song, B. A.; Chi, Y. R. Angew. Chem, Int. Ed. 2015, 54, 5161. (c) Wang, Y.; Wu, B.; Zheng, L.; Wei, D.; Tang, M. Org. Chem. Front. 2016, 3, 190. (d) Wang, Y.; Tang, M.; Wang, Y.; Wei, D. J. Org. Chem. 2016, 81, 5370.

(14) (a) Douglas, J. J.; Churchill, G.; Slawin, A. M. Z.; Fox, D. J.; Smith, A. D. *Chem. - Eur. J.* **2015**, *21*, 16354. (b) Hans, M.; Wouters, J.; Demonceau, A.; Delaude, L. *Chem. - Eur. J.* **2015**, *21*, 10870.

(15) (a) Hao, L.; Du, Y.; Lv, H.; Chen, X.; Jiang, H.; Shao, Y.; Chi, Y. R. Org. Lett. **2012**, *14*, 2154. (b) Chen, S.; Hao, L.; Zhang, Y.; Tiwari, B.; Chi, Y. R. Org. Lett. **2013**, *15*, 5822. (c) Fu, Z. Q.; Xu, J. F.; Zhu, T.; Leong, S. W. W. Y.; Chi, Y. G. R. Nat. Chem. **2013**, *5*, 835. (d) Xu, J.; Jin, Z.; Chi, Y. R. Org. Lett. **2013**, *15*, 5028. (e) Chauhan, P.; Enders, D. Angew. Chem., Int. Ed. 2014, 53, 1485. (f) Xu, J.; Yuan, S.; Miao, M. Org. Lett. 2016, 18, 3822.

(16) Cheng, J. T.; Chen, X. Y.; Ye, S. Org. Biomol. Chem. 2015, 13, 1313.

(17) Lee, A.; Younai, A.; Price, C. K.; Izquierdo, J.; Mishra, R. K.; Scheidt, K. A. J. Am. Chem. Soc. **2014**, *136*, 10589.

(18) (a) Xie, Y.; Yu, C.; Li, T.; Tu, S.; Yao, C. Chem. - Eur. J. 2015, 21, 5355. (b) Que, Y.; Xie, Y.; Li, T.; Yu, C.; Tu, S.; Yao, C. Org. Lett. 2015, 17, 6234. (c) Zhu, L.; Yu, C.; Li, T.; Wang, Y.; Lu, Y.; Wang, W.; Yao, C. Org. Biomol. Chem. 2016, 14, 1485.

(19) Alden-Danforth, E.; Scerba, M. T.; Lectka, T. Org. Lett. 2008, 10, 4951.